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Integral and Derivative Functions of Time
Part of: Error Analysis

https://vrtracker.xyz/handling-imu-drift/
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Motivation

Navigation Measurements

Rate Gyros

Accelerometers

IMUs (Inertial Measurement Units)

GPS

https://www.kistler.com/en/product/type-kcd16008/

https://www.sparkfun.com/products/9755

https://vrtracker.xyz/handling-imu-drift/

https://www.locosystech.com/en/product/
GPS-Module/gps-module-hd-1010.html
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Sensor output

The output from a sensor can be modeled as

where x(t) is the true value,
eb is the offset, bias, or baseline error,
and en(t) is the error due to noise. en(t) is usually modeled as
Gaussian white noise with standard deviation s or S.

( ) ( ) ( )m b nx t x t te e= + +
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Relationships in 1-D
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What Happens to Measurements?

Position

Velocity

Acceleration

𝜀!(𝑡") is a Gaussian random sequence 
with standard deviation, s.

( ) ( )m i i b i iv t v t t t te s= + + D

( ) ( ) ( )m i i b n ia t a t te e= + +

2 3/21 2( ) ( )
2 3m i i b ir t r t t t te s= + + D

Observational bound

Observational bound
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What Happens to Measurements?

Position

Velocity

Acceleration

( ) ( )m i i aa t a t A s= +

( ) ( )m i i b i ir t r t t t te s= + + D

( ) ( ) ( )m i i b n iv t v t te e= + + 𝜀!(𝑡") is a Gaussian random sequence 
with standard deviation, s.

Observational bound

Observational bound
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What Happens to Measurements?

Position

Velocity

Acceleration

( ) ( )m i i aa t a t A s= +

( ) ( ) ( )m i i b n ir t r t te e= + + 𝜀!(𝑡") is a Gaussian random sequence 
with standard deviation, s.

( ) ( )m i i vv t v t A s= +

Observational bound

Observational bound
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Observation Bounds Calculation

For Gaussian white noise with standard deviation, s,

( )clz f tl s=

12erf ( )clz cl-= where erf#$is the inverse error function (erfinv in 
MATLAB) and cl is the confidence level, e.g., 95%

12erf ( )i icl t tl s-= D 1 3/222erf ( )
3i icl t tl s-= De.g., or

8



2/5/22

5

E80
Experimental
Engineering

Numerical Integration of White Noise
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Integrals of White Noise with 
Observation Bounds
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Measured Acceleration and Velocity 
with Observation Bounds
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Measured Acceleration and Position 
with Observation Bounds

0 1 2 3 4 5 6 7 8 9 10
Time (s)

-1

-0.5

0

0.5

1

1.5

2

2.5

Ac
ce

le
ra

tio
n

True and Measured Acceleration

True Acceleration
Measured Acceleration

0 1 2 3 4 5 6 7 8 9 10
Time (s)

0

2

4

6

8

10

12

14

16

18

20

Po
si

tio
n

Calculated Position from Measured Acceleration

True Velocity
Calculated Velocity
Upper Confidence Bound
Lower Confidence Bound

12



2/5/22

7

E80
Experimental
Engineering

Zero-Mean Position Time Series

13

E80
Experimental
Engineering

Position Noise and Velocity Noise
Histogram and Fitted Normal Distribution of Position Noise
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Position Noise and
Acceleration Noise

Histogram and Fitted Normal Distribution of Position Noise
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Experimental Position Data
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Straight and Smoothed Velocity
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Straight and Smoothed Acceleration
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Takeaways

1. Integrating numerical data decreases noise, but is 
susceptible to bias and random walk errors.

2. Differentiating numerical data increases noise. The 
increase is most easily determined numerically.

3. Advanced methods for dealing with differentiation exist.
4. When reporting integrated time-series data, plot the 

data and the confidence interval bounds.
5. When reporting differentiated time-series data, report 

standard deviation or confidence bounds values. Plotting 
bounds is likely to be too messy.
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